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We construct a very general family of characteristic functions describing random matrix ensemblessRMEd
having a global unitary invariance, and containing an arbitrary, one-variable probability measure, which we
characterize by a “spread function.” Various choices of the spread function lead to a variety of possible
generalized RMEs, which show deviations from the well-known Gaussian RME originally proposed by
Wigner. We obtain the correlation functions of such generalized ensembles exactly and show examples of how
particular choices of the spread function can describe ensembles with arbitrary eigenvalue densities as well as
critical ensembles with multifractality.
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The concept of random matrix ensemblessRMEd pro-
posed by Wigner to describe statistical properties of the ei-
genvalues and eigenfunctions of complex nucleif1g, has
proved to be a very useful idea in the studies of a wide
variety of physical systems including the equilibrium and
transport properties of disordered quantum systems, quantum
chaos, two-dimensional quantum gravity, conformal field
theory, and chiral phase transitions in quantum chromody-
namics, as well as financial correlations and wireless com-
municationsf2,3g. The underlying reason for such a wide
range of applications is the universality of the correlations
between the eigenvalues of given classes of RMEs. For ex-
ample, once appropriate variables are chosen in which the
mean spacing between eigenvalues is unity, the Gaussian en-
sembles of randomN3N matricesswith given symmetriesd
have, in theN→` limit, a universalszero parameterd form
for the nearest-neighbor spacing distribution or the spectral
rigidity snumber variance of eigenvalues in a given ranged
known generally as the Wigner-Dyson distributionf1g. The
appropriately scaled energy levels of complex nuclei and
transmission levels of weakly disordered mesoscopic metals
both follow the above universal distributions even though the
physical sizes of the systems differ by about nine orders of
magnitudef4g.

More recently, much interest has been generated in find-
ing RMEs thatdeviatefrom the universal properties of the
Gaussian ensembles in specific ways. One particular example
is the attempt to find “critical” ensembles relevant for sys-
tems at the critical point of, e.g., the Anderson transition in
disordered conductors where the spacing distribution or the
spectral rigidity is known to deviate from those of Gaussian
RMEs f5–7g. Another example is the attempt to find a one-
parameter generalization of the Gaussian RME that can de-
scribe a monotonic change from the universal Wigner-Dyson
distribution to a completely uncorrelated Poisson distribution
as the parameter is changed, which may be relevant for a
crossover from a chaotic to an integrable systemf8g. Yet
another example is the observation for financial cross-
correlation matrices in which statistics of most eigenvalues

agree with the universal predictions of Gaussian RMEs but
there are deviations for a few of the largest eigenvaluesf9g.
It is therefore of great interest to a wide variety of areas and
disciplines to study RMEs that are in some sense generaliza-
tions of the Gaussian RMEs.

In seeking generalizations of Gaussian RMEs, suitable for
arbitrarily many variables, it is natural to begin with the
probability distributionsPNsXd, whereX denotes anN3N
Hermitian matrix. Gaussian ensembles have centered distri-
butions that are in factsexponentiald functions of the single
variable trsX2d. It is natural to restrict our generalizations to
probability distributions PNsXd=WNftrsX2dg. One such
example that might come to mind could bePNsXd
~exph−ftrsX2dg2j, but although such a proposal is satisfac-
tory for any finite N, it fails to generalize to a valid new
distribution asN→`. The clue to discovering the proper
class of generalizations is to work not directly with the dis-
tribution PNsXd themselves, but with their Fourier trans-
forms, i.e., with the associatedcharacteristic functionsf11g
CNsTd given by

CNsTd =E eitrsTXdPNsXddVX, s1d

with CNs0d=1. The integration is over the invariant Haar
measure that preserves hermiticity. In the present paper we
first prove that ifCNsTd is a function of trsT2d only, then the
most general CNsTd, valid for arbitrarily largeN, can always
be written as

CNsTd =E
0

`

e−btrsT2dfsbddb, E
0

`

fsbddb= 1, s2d

wherefsbd is anynon-negative function, which may be cho-
sen phenomenologically. While Eq.s2d is evidently a posi-
tive superposition of Gaussians, a vast family of distributions
is thereby included, e.g., Cauchy, Levy, etc.; this result gen-
eralizes the specialized and more restrictive examples of
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f12g. We then show that then-point correlation function for
the corresponding unitary RMEf10g of the matricesX with
eigenvaluesxi can be written downexactlyas

Rnsx1, . . . ,xnd =E
0

` dbfsbd
s4bdn/2 detfKN

Gsx̄i,x̄jdgi,j=1,2,. . .,n. s3d

Here we have defined x̄i =xi /2Îb, and KN
Gsxi ,xjd

=on=0
N−1wnsxidwnsxjd is the well-known two-point kernel of the

Gaussian RMEf1g, wherewnsxd~e−x2/2Hnsxd are orthonor-
mal functions associated with the Hermite polynomials
Hnsxd. In particular, the one-point function is just the density
of levels, givensin the largeN limit d by

sNsxd =
Î2N

2p
E

x2/8N

` dbfsbd
b1/2

Î1 − x2/8Nb, s4d

where we have used the known result that for largeN,
KN

Gsx,xd;sN
Gsxd=Î2N−x2/p for uxu,Î2N and zero other-

wise f1g. It is clear that one can obtain differentx and N
dependence for the densities by choosing differentfsbd.
Similarly, the two-point cluster function defined as
T2sx1,x2d;−R2sx1,x2d+R1sx1dR1sx2d has the formT2=T2

0

−dT2, where

T2
0sx1,x2d =E

0

` dbfsbd
4b

fKN
Gsx̄1,x̄2dg2 s5d

and

dT2 =E
0

` dbfsbd
4b

sN
Gsx̄1dsN

Gsx̄2d − sNsx1dsNsx2d. s6d

We call fsbd the spread function. Note that the Gaussian
RME corresponds to the choicefsbd=dsb−b0d, for which
dT2 is identically zero. Other choices of the spread function
can describe a variety of possible generalized RMEs. Alter-
natively, correlation functions of a physically relevant RME
of matricesX characterized by a givenCNsTd can be obtained
exactly if the corresponding spread functionfsbd can be

identified. For example,CNsTd=e−b0
Îtr T2

will correspond to

a choice offsbd~b−3/2e−b0
2/b, for which the exact correlation

functions can be easily written down.
The universal features of Gaussian RMEs arise in theN

→` limit and when the variables are chosen in which the
mean level spacing is unitysthis is known as unfoldingd. In
place ofx1 and x2 one defines new variablesr and z such
that dr=ssx1ddx1, dz=ssx2ddx2, and the new cluster func-
tion

Y2sr,zddrdz ; T2sx1,x2ddx1dx2 s7d

is well defined everywhere in the limitN→`. For Gaussian
RMEs, there exists the sum rule that the integral ofY2sr ,zd
over r is always unity. It has been arguedf13,14g that the
violation of this sum rule is a signature of critical ensembles,
where the deficit of the sum rulesfor translationally invariant
cluster functionsd

h ; 1 −E
−`

`

Y2sr,zddr s8d

is related to the multifractality of wave functions at the criti-
cal point f15g. We will show that there are choices forfsbd
for which the sum rule is violated. These choices would then
correspond to critical ensembles.

We begin by proving that ifCsTd is a function of trsT2d,
then the most generalCNsTd, valid for arbitrarily largeN, can
be written in the form Eq.s2d. Note that ifCsTd is a function
of trsT2d only, then from Eq. s1d we have PNsU†XUd
=PNsXd whereU is unitary. Thus the distribution is invariant
under a rotation of basis.

Proof of Eq. (2). We suppose that

CsTd ; EsiTi2
2d ; E eitrsTXddmsXd, s9d

for all HermitianT with iTi2
2; trsT2d,`, wherem is a suit-

able probability measure. It follows thatCsT−Sd=EsiT
−Si2

2d is a real, continuous function of positive type, and the
Gel’fand-Naimark-SegalsGNSd Theoremf16g ensures that
there exist vectorsuTl and uSl in a separable Hilbert space
such that

kSuTl ; EsiT − Si2
2d. s10d

A family of operatorsVsUd may be defined by

kSuVsUduTl ; kSuT + Ul = EsiT + U − Si2
2d, s11d

and it readily follows thatVsUd is an Abelian group of uni-
tary operators for which the operator normiVsUdi=1. Now
consider the sequenceUsMd=hUrs

sMdj where

Urs
sMd ; ÎudrMdsM, u ù 0, 1ø M , `. s12d

It follows that the weak operator limit

lim
M→`

kSuVsUsMdduTl = EsiT − Si2
2 + ud ; kSuAsuduTl, s13d

an expression that defines the operatorAsud for all uù0.
Clearly, Asud†=Asud, AsudAsvd=Asu+vd, and iAsudiø1,
and thereforeAsud=e−uB, whereB†=Bù0. Hence,

Esud = k0ue−uBu0l =E
0

`

e−ubdmsbd, s14d

wherem is a probability measure, and the latter relation fol-
lows from the spectral representation forB. Finally, if we
assume thatm is absolutely continuous and replaceu by iTi2

2,
we recover Eq.s2d. This completes the proof of Eq.s2d.

We next show that given Eq.s2d, the n-point correlation
function is given by Eq.s3d.

Proof of Eq. (3). Given the characteristic function Eq.s2d,
the probability density is, from Eq.s1d,

PNsXd ~ E
0

`

dbfsbd E e−itrsTXde−btrsT2ddVT. s15d

The integral overN2 independent elements ofT results in
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PNsXd ~ E
0

` dbfsbd

bN2/2
e−trsX2d/4b. s16d

The joint probability distribution of the eigenvalues ofX is
then given byf1g

PNshxijd ~ E
0

` dbfsbd

bN2/2 p
i, j

sxi − xjd2e−oixi
2/4b, s17d

where pi, jsxi −xjd2 is just the Jacobian of transformation
from the matrix element to the eigenvalue and eigenvector
coordinates. We now take advantage of the known results for
Gaussian random matrix ensembles by noting that before the
b integral, a change of variablesx̄i =xi /2Îb changes the dis-
tribution to exactly Gaussian RME with some additional
b-dependent terms; this leads directly to Eq.s3d. This com-
pletes the proof of Eq.s3d.

As an example, let us consider the spread functionfsbd
~bN2/2+n−1e−«2/4be−gb. Then

PNsXd ~ S«2 + trsX2d
4g

Dn/2

Kn„
Îgf«2 + trsX2dg…, s18d

whereKn is a modified Bessel function. In the limitg→0,
choices ofn would include ensembles of Lévy matricesf17g.
If n=−n where n is a positive integer, then in the same
limit g→0 this gives rise toPNsXd~ f«2+trsX2dg−n, while
in the opposite limit g→` we get PNsXd~ f«2

+trsX2dg−sn/2+1/4de−Îgf«2+trsX2dg. The two-point correlation
function for all g and « can be written down exactly from
Eqs.s5d and s6d.

As an explicit example of how different behavior of the
correlation functions may arise for some choices offsbd in
the largeN limit, let us consider the level density for

fsbd = cN
2b̄ + 1

fb̄sb̄ + 1dg3/2
, b , b0;

= 0, b . b0, s19d

whereb̄;Î8Nb andb0 is determined from the normalization

condition. We choosecN such thatb̄0;Î8Nb0@1. Then the
density obtained from Eq.s4d is given by

sNsxd <
1

p

cN

Îxsx + 1d
, s20d

which is similar to that satisfied by the transmission eigen-
values in disordered conductors and is known to lead to de-
viations from Gaussian RMEf4,7g. Note that the density
diverges as 1/Îx in the limit x→0. It is clear that by appro-
priately choosing the spread functionfsbd, one can obtain a
variety of densities that can go to zero, a constant or infinity
as a function ofx as x→0. One can also choosefsbd to
obtain anN-dependent density at the origin that goes to zero,
a constant or infinity in theN→` limit. An N-independent
finite density at the origin was conjectured to be important
for the properties of theq random matrix ensembles re-
viewed in f18g.

In particular, fsbd can be defined such that in the limit

N→` both ssxd and dT2sx,yd become constant. In such
cases if we define

fsld =E
0

`

dbfsbde−l/Îb, s21d

then fs0d=1, ssxd=s0=−sÎ2N/2pdf8s0d and dT2sx,yd
=sN/2p2dhf9s0d−ff8s0dg2j. We now chooser=s0x, z
=s0y to scale the density to unity. Then the scaled cluster
function defined in Eq.s7d has the simple formY2sr ,zd
=T2sx1,x2d /s0

2. Using Eqs.s5d ands6d to defineY2
0 anddY2,

we find

Y2
0sr,zd =

1

p2E
0

` dbfsbd
sr − zd2sin2SÎ N

2b

sr − zd
s0

D , s22d

where we have used the known largeN behavior forKN
Gsx,yd

f1g, and

dY2sr,zd =
f9s0d

ff8s0dg2 − 1. s23d

The deficit of the sum rule Eq.s8d then takes the form

h = 1 −E
−N/2

N/2

drY2
0sr,zd + NF f9s0d

ff8s0dg2 − 1G . s24d

If s0~ÎN, the argument of the sine function inY2
0 is

independent ofN. Then the integral ofY2
0 is just unity for all

fsbd in the limit N→`. Using the inequality

E dbfsbdb−1/2 øÎE dbfsbdb−1E dbfsbd s25d

and the normalization offsbd, we obtainhù0. The equality
sign holds only if fsbd~dsb−b0d, which is the Gaussian
RME. As an explicit example of finite positiveh in the large
N limit, let us choose

fsbd ~ bae−b/Îbe−gÎb. s26d

With a=−3/4, this immediately leads toh=N/2Îbg. If
Îbg~N, we get a well-defined critical ensemble in the ther-
modynamic limit. Note that for finiteh, Eq. s23d givesdY2
=h /N→0 in theN→` limit.

The varianceSssd=kn2l−knl2 of the number of eigenval-
uesn in an intervals−s/2 ,s/2d is given by

Sssd =E
−s/2

s/2

drE
−s/2

s/2

dzfdsr − zd − Y2sr − zdg. s27d

For Gaussian RME,Sssd~ ln s for large s. For critical en-
sembles discussed in the literaturef5,7g, Sssd~s. Our choice
of the spread functionfsbd in Eq. s26d, which gives rise to a
constantdY2, produces a termSssd~s2 in addition to terms
Sssd~ ln s from Y2

0. However, as mentioned earlier, this term
is proportional toh /N, which vanishes in the largeN limit
for finite h. Equations26d therefore corresponds to a kind of
critical ensemble withSssd~ ln s for larges.

Note from Eq.s5d that in generaldT2 is not translationally
invariant; clearly the critical ensembles in such cases will not
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give rise to number varianceSssd~ ln s, and will correspond
to a different class. We also get a different class of critical
ensembles if the contribution toh from Y2

0 is different from
unity. For choices offsbd which diverge asb→0, changing
the order of the integrals overr andb in Eq. s8d may not be
justified, and the integral in Eq.s22d may depend on the
choice of suchfsbd.

In summary, we have constructed a generalized random
matrix ensemble whose characteristic function contains an
arbitrary non-negative spread functionfsbd with the only
condition thate0

`fsbddb=1. The correlation functions of the
generalized ensembles are exactly solvable for any given
fsbd. Various choices offsbd lead to a variety of possible
density of levelssNsxd, which can depend onx or N in a
variety of different ways, leading to possible deviations from
Gaussian Ensembles. In particular, we showed that it is pos-
sible to choose forms offsbd that lead to violations of the

sum rule for the scaled two-point cluster functionY2sr ,zd
where the deficit of the sum ruleh, as given in Eq.s8d, is a
characteristic of critical ensembles with multifractal wave
functions. Unlike critical ensembles discussed in the litera-
ture, these sum rule violations can correspond to different
forms for the number varianceSssd, corresponding to differ-
ent classes of critical ensembles. These solvable generalized
ensembles should therefore be of interest in a wide range of
areas where random matrix ensembles play an important
role. While there are only a few known examples of gener-
alized RMEs for which correlation functions can be evalu-
ated exactlyf6,7g, a given model ofCNsTd or PNsXd charac-
terizing a physically relevant generalized RME becomes
exactly solvable if the corresponding spread functionfsbd
can be found. This opens up the possibility to obtain exact
results for a variety of interesting and physically useful gen-
eralized RMEs.

f1g M. L. Mehta,Random Matrices, 2nd ed.sAcademic, New York
1991d.

f2g For recent reviews and applications see T. Guhr, A. Mueller-
Groeling, and H. Weidenmueller, Phys. Rep.299, 189s1998d;
Random Matrix Theory, edited by P. J. Forrester, N. C. Snaith,
and J. J. M. Verbaarschot, special issue of J. Phys. A 36s12d
s2003d.

f3g L. Laloux, P. Cizeau, J. P. Bouchaud, and M. Potters, Phys.
Rev. Lett. 83, 1467s1999d; A. Moustakaset al., Science287,
287 s2000d.

f4g K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Lett.
59, 2475 s1987d; A. D. Stone, P. Mello, K. A. Muttalib, and
J.-L. Pichard, inMesoscopic Phenomena in Solids, edited by
B. L. Altshuler, P. A. Lee, and R. A. WebbsNorth-Holland,
Amsterdam, 1991d, p. 369.

f5g B. L. Altshuleret al., Zh. Eksp. Teor. Fiz.94, 343s1988d fZh.
Eksp. Teor. Fiz.67, 625 s1988dg; B. I. Shklovskii et al., Phys.
Rev. B 47, 11 487 s1993d; J.-L. Pichard and B. Shapiro, J.
Phys.sFranced 4, 623 s1994d; V. E. Kravtsov, I. V. Lerner, B.
L. Altshuler, and A. G. Aronov, Phys. Rev. Lett.72, 888
s1994d; A. D. Mirlin et al., Phys. Rev. E54, 3221s1996d; E.
Bogomolny, O. Bohigas, and M. P. Pato,ibid. 55, 6707
s1997d; A. M. Garcia-Garcia and J. J. M. Verbaarschot, Nucl.
Phys. B 586, 668 s2000d.

f6g M. Moshe, H. Neuberger, and B. Shapiro, Phys. Rev. Lett.73,
1497 s1994d; V. E. Kravtsov and K. A. Muttalib,ibid. 79,
1913 s1997d.

f7g K. A. Muttalib, Y. Chen, M. E. H. Ismail, and V. N. Nicopou-
los, Phys. Rev. Lett.71, 471s1993d; C. Blecken, Y. Chen, and
K. A. Muttalib, J. Phys. A27, L563 s1994d.

f8g T. A. Brody, Lett. Nuovo Cimento Soc. Ital. Fis.7, 482
s1973d; M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser.
A 356, 375s1977d; T. H. Seligman, J. J. M. Verbaarschot, and

M. R. Zirnbauer, Phys. Rev. Lett.53, 215s1984d; M. V. Berry
and M. Robnik, J. Phys. A17, 2413s1984d; E. B. Bogomolny,
B. Georgeot, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.
69, 1477s1992d; C. Crosche, J. Phys. A25, 4573s1992d.

f9g V. Plerouet al., Phys. Rev. Lett.83, 1471s1999d.
f10g For simplicity, we will consider unitary RMEs with broken

time reversal symmetryf1g; extension to other symmetries
should be straightforward.

f11g See, e.g., E. Lukacs,Characteristic Functions, 2nd ed.sHafner
Pub. Co., New York, 1970d.

f12g A. C. Bertoula, O. Bohigas, and M. P. Pato, Phys. Rev. E70,
065102s2004d; F. Toscano, R. O. Vallejos, and C. Tsallis,ibid.
69, 066131s2004d.

f13g J. T. Chalker, V. E. Kravtsov, and I. V. Lerner, Pis’ma Zh.
Eksp. Teor. Fiz.64, 355 s1996d fPis’ma Zh. Eksp. Teor. Fiz.
64, 386 s1996dg.

f14g C. M. Canali and V. E. Kravtsov, Phys. Rev. E51, R5185
s1995d.

f15g F. Wegner, Z. Phys. B36, 209 s1980d; C. Castellani and L.
Peliti, J. Phys. A19, L429 s1986d; W. Pook and M. Janssen, Z.
Phys. B: Condens. Matter82, 295 s1991d; J. T. Chalker,
Physica A 167, 253 s1990d; B. Huckestein and L. Schweitzer,
Phys. Rev. Lett.72, 713 s1994d.

f16g See, e.g., G. G. Emch,Algebraic Methods in Statistical Me-
chanics and Quantum Field TheorysWiley-Interscience, New
York, 1972d.

f17g P. Cizeau and J. P. Bouchaud, Phys. Rev. E50, 1810s1994d;
Z. Burdaet al., ibid. 65, 021106s2002d.

f18g See K. A. Muttalib, Y. Chen, and M. E. H. Ismail, inSymbolic
Computation, Number Theory, Special Functions, Physics and
Combinatoricsedited by F. Garvan and M. IsmailsKluwer
Academic, Dordrecht, 2001d.

K. A. MUTTALIB AND J. R. KLAUDER PHYSICAL REVIEW E 71, 055101sRd s2005d

RAPID COMMUNICATIONS

055101-4


