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We construct a very general family of characteristic functions describing random matrix enséRMIEs
having a global unitary invariance, and containing an arbitrary, one-variable probability measure, which we
characterize by a “spread function.” Various choices of the spread function lead to a variety of possible
generalized RMEs, which show deviations from the well-known Gaussian RME originally proposed by
Wigner. We obtain the correlation functions of such generalized ensembles exactly and show examples of how
particular choices of the spread function can describe ensembles with arbitrary eigenvalue densities as well as
critical ensembles with multifractality.
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The concept of random matrix ensembld®ME) pro-  agree with the universal predictions of Gaussian RMEs but
posed by Wigner to describe statistical properties of the eithere are deviations for a few of the largest eigenval@és
genvalues and eigenfunctions of complex nudlE], has It is therefore of great interest to a wide variety of areas and
proved to be a very useful idea in the studies of a widedisciplines to study RMEs that are in some sense generaliza-
variety of physical systems including the equilibrium andtjons of the Gaussian RMEs.
transport properties of disordered quantum systems, quantum |y seeking generalizations of Gaussian RMEs, suitable for
chaos, two-dimensional quantum gravity, conformal fieldgrpitrarily many variables, it is natural to begin with the
theory, and chiral phase transitions in quantum chromodypopapility distributionsPy(X), where X denotes arNx N
namics, as well as financial correlations and wireless COMgermitian matrix. Gaussian ensembles have centered distri-

gzgga;'fogggzlif;ﬁgg s igntﬂgrlmgeigﬁg/ nol;‘otrhcseuggrril;\t/ilgﬁsbu“ons that are in fadtexponentigl functions of the single
. N . o
between the eigenvalues of given classes of RMEs. For e)y_arlable t{X). It is natural to restrict our generalizations to

ample, once appropriate variables are chosen in which throbability dlstrlputlons PN(X)=WN[Fr(X2)]. One such

mean spacing between eigenvalues is unity, the Gaussian ef¥@mple that might come to mind could bBy(X)

sembles of randorhl X N matrices(with given symmetries > exp{-[tr(x*)]?}, but although such a proposal is satisfac-

have, in theN— ¢ limit, a universal(zero parametgrform tory for any finite N, it fails to generalize to a valid new

for the nearest-neighbor spacing distribution or the spectralistribution asN—o. The clue to discovering the proper

rigidity (number variance of eigenvalues in a given range class of generalizations is to work not directly with the dis-

known generally as the Wigner-Dyson distributiphl. The  tribution Py(X) themselves, but with their Fourier trans-

appropriately scaled energy levels of complex nuclei andorms, i.e., with the associatezharacteristic function$11]

transmission levels of weakly disordered mesoscopic metalg,(T) given by

both follow the above universal distributions even though the

hysical sizes of the systems differ by about nine orders of .

agnitude 4] ’ ’ cum = | @y odv, M
More recently, much interest has been generated in find-

ing RMEs thatdeviatefrom the universal properties of the with Cy(0)=1. The integration is over the invariant Haar

Gaussian ensembles in specific ways. One particular exampieeasure that preserves hermiticity. In the present paper we

is the attempt to find “critical” ensembles relevant for sys-first prove that ifCy(T) is a function of t(T?) only, then the

tems at the critical point of, e.g., the Anderson transition inmost general Q(T), valid for arbitrarily largeN, can always

disordered conductors where the spacing distribution or thge written as

spectral rigidity is known to deviate from those of Gaussian

RMESs [5-7]. Another example is the attempt to find a one- N - B

parameter generalization of the Gaussian RME that can de- Cn(M = fo et (b)db, fo f(lbdb=1, (2

scribe a monotonic change from the universal Wigner-Dyson

distribution to a completely uncorrelated Poisson distributiorwheref(b) is any non-negative function, which may be cho-

as the parameter is changed, which may be relevant for sen phenomenologically. While E) is evidently a posi-

crossover from a chaotic to an integrable systiédh Yet  tive superposition of Gaussians, a vast family of distributions

another example is the observation for financial crossis thereby included, e.g., Cauchy, Levy, etc.; this result gen-

correlation matrices in which statistics of most eigenvaluesralizes the specialized and more restrictive examples of
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[12]. We then show that the-point correlation function for o
the corresponding unitary RMELO] of the matricesX with n=1 J Ya(p,{)dp (8)

eigenvalues; can be written dowrexactlyas
* dbf(b) is related to the multifractality of wave functions at the criti-

- G | point[15]. We will show that th hoi fbtb

R(Xg, -, ”)_f (4b)”’2d (KS XDl jm12, 0 (D cal point[15]. We will show that there are choices fbib)

for which the sum rule is violated. These choices would then
o _ correspond to critical ensembles.
Here we have definedX=x/2\b, and Kg(x,x) We begin by proving that i€(T) is a function of t(T?),
=300 en(Xi) en(X;) is the well-known two-point kernel of the  then the most gener@ly(T), valid for arbitrarily largeN, can
Gaussian RMHE1], where ¢y(x) ce™ ’2Hn(x) are orthonor-  be written in the form Eq(2). Note that ifC(T) is a function
mal functions associated with the Hermite polynomialsof tr(T?) only, then from Eq.(1) we have Py(UTXU)
H,(x). In particular, the one-point function is just the density =Py(X) whereU is unitary. Thus the distribution is invariant
of levels, given(in the largeN limit) by under a rotation of basis.
Proof of Eq. (2) We suppose that

V2N 2N dbf(b)

_\2
on(X) = 27 ) oy D2 — > V1 -x8Nb, (4)

C(M=E(T|) = f & M™du(X), 9

where we have used the known result that for laige
KS(x,X) = 0$(x)=\2N-x2/ 7 for |x|<\2N and zero other-
wise [1]. It is clear that one can obtain differertand N
dependence for the densities by choosing differéim).
Similarly, the two-point cluster function defined as
T2(X1,X2)E_Rz(xl,X2)+R1(X1)R1(X2) has the fOI‘mTZZTg

for all Hermitian T with ||T||5=1tr(T?) <o, whereu is a suit-
able probability measure. It follows thaE(T-S=E(|T
-gJ5) is a real, continuous function of positive type, and the
Gel'fand-Naimark-SegalGNS) Theorem[16] ensures that
there exist vector$T) and |S) in a separable Hilbert space

—'ST,, where such that
dbiH) (S =E(T-5). (10
Taxa, %) = J — KNG X) P (5) A family of operatorsv(U) may be defined by
and (V) Ty =(ST+W=E(T+U~-S),  (11)

and it readily follows that/(U) is an Abelian group of uni-
2_[ db(b) 03()o3(%) - on(x)on(x,).  (6)  tary operators for which the operator nofivi(U)[|=1. Now
0 consider the sequend#™ = {U '} where

We call f(b) the spread function. Note that the Gaussian UMW = usyos, u=0, 1=M<w (12
RME corresponds to the choidgb)=8(b—bg), for which
ST, is identically zero. Other choices of the spread function

can describe a variety of possible generalized RMEs. Alter- lim (SV(UM)[T) = E(T - 3|2"' u) = (SAW|T), (13)
natively, correlation functions of a physically relevant RME — 2 ’

of matricesX characterized by a give@y(T) can be obtained an expression that defines the operatén) for all u=0

exactly if the corresponding sireag functiétb) can be Clearly, A(U)T=A(), AWA®)=AU+v), and [AU)|<1.

identified. For exampIeCN(T) e PV T° will correspond to and therefored(u)=e"B, whereB'=B=0. Hence

a choice off(b)«b=3/%e" b3 for which the exact correlation B

functions can be easily written down. Eu) = <O|e‘”B|O) :f e Uodm(b) (14)
0

It follows that the weak operator limit

The universal features of Gaussian RMEs arise inNhe
—oo limit and when the variables are chosen in which the
mean level spacing is unitithis is known as unfolding In ~ wherem s a probability measure, and the latter relation fol-
place ofx; andx, one defines new variablgsand ¢ such  lows from the spectral representation fBr Finally, if we
that dp=a(x,)dx;, dZ=0(x,)d%, and the new cluster func- assume thanis absolutely continuous and replacey ||T3,
tion we recover Eq(2). This completes the proof of ER).

We next show that given Ed2), the n-point correlation
Yo(p, O)dpdl = To(Xq,%0)dX A% (7)  function is given by Eq(3).

_ ] ) ) ) Proof of Eq. (3) Given the characteristic function E@),
is well defined everywhere in the limN — . For Gaussian the probability density is, from Eq1),
RMEs, there exists the sum rule that the integra¥g(p, ¢)
over p is always unity. It has been argu¢ti3,14 that the ” i btr(T2
violation of this sum rule is a signature of critical ensembles, Pn(X) = f dbf(b) f e "M (Mdvy., (15
where the deficit of the sum ruléor translationally invariant
cluster functions The integral oveiN? independent elements &fresults in
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Pn(X) f
0

The joint probability distribution of the eigenvalues Xfis
then given by[1]

N—o both o(x) and §T,(x,y) become constant. In such

dbitb) e 0D, cases if we define

bN2/2 (16)

d\) = f wdbf(b)e-m, (21)
0

dbf(b) 2 then ¢(0)=1, o(x)=0p=-(\2N/2m)¢'(0) and ST,(x,y)
Paibx) = f e L0 AT (0 (0)-[6 (07 We now choosep=ogx, £

' =opy to scale the density to unity. Then the scaled cluster

where IT;j(x;=X;)? is just the Jacobian of transformation function defined in Eq.(7) has the simple formY,(p,?)
from the matrix element to the eigenvalue and eigenvectorT,(x,,x,)/ o3. Using Eqs(5) and(6) to defineY3 and 8Y,,

coordinates. We now take advantage of the known results fage find

Gaussian random matrix ensembles by noting that before the

b integral, a change of variables=x;/2yb changes the dis-

tribution to exactly Gaussian RME with some additional

b-dependent terms; this leads directly to E8). This com-
pletes the proof of Eq.3).
As an example, let us consider the spread funcfidm)

2 2
o bN /2+v—1e—a /4be—7b. Then

2 2\ \ v/2
PNOO“(%;W) KA +r(XA)]),  (18)

whereK, is a modified Bessel function. In the lim— 0,
choices ofy would include ensembles of Lévy matriddy].

If v=-n wheren is a positive integer, then in the same

limit y—0 this gives rise toPy(X)x[£2+tr(X?)]™, while
in the opposite limit y—o we get Py(X)x[e?

Np-9

2b 0o

dbf(b) (
Sir?
(p— é)z

where we have used the known lafgésehavior fork$(x,y)
[1], and

Y(p,0) = ﬂ; ) (22

¢"(0)
No(p,0) = - 23
2p,9) (5 OF (23
The deficit of the sum rule Ed8) then takes the form
N/2 U
=1- dpY3(p, N[ ¢(0) —1]. 24
7 f_le pYa(p, Q) + (5 O (24)

If oo N, the argument of the sine function ¥ is

independent oN. Then the integral of(g is just unity for all
f(b) in the limit N—cc. Using the inequality

fdbf(b)b‘l/zs \/f dbf(b)b‘lfdbf(b) (25

and the normalization of(b), we obtainy=0. The equality

sign holds only if f(b) < 8(b-by), which is the Gaussian
RME. As an explicit example of finite positive in the large

N limit, let us choose

+r(X2) |- (W2 1A\ 0] The  two-point  correlation
function for all y and & can be written down exactly from
Egs.(5) and(6).

As an explicit example of how different behavior of the
correlation functions may arise for some choicesf@) in
the largeN limit, let us consider the level density for

2b+1
flb)=cy——, b<by;
N+ ’

=0, b>by, f(b) = e Pe P,

(26)

With «=-3/4, this immediately leads te= N/Z\,By If
VBy=N, we get a well-defined critical ensemble in the ther-
modynamic limit. Note that for finitey, Eq. (23) gives §Y,
=7/N—0 in theN— oo limit.

(19

whereb= V8Nb andby, is determined from the normalization

condition. We choosey such thatgoz V8Nby>1. Then the
density obtained from Ed4) is given by

1 ¢y The variances(s)=(n?—(n)? of the number of eigenval-
oN(X) = — =, (20) uesn in an interval(-s/2,s/2) is given b
TAX(X + 1) : y

which is similar to that satisfied by the transmission eigen-
values in disordered conductors and is known to lead to de-
viations from Gaussian RME4,7]. Note that the density
diverges as 1yx in the limit x— 0. It is clear that by appro- For Gaussian RMEX(s)=In s for large s. For critical en-
priately choosing the spread functiétb), one can obtain a Sembles discussed in the literatige7], Z(s) «s. Our choice
variety of densities that can go to zero, a constant or infinityof the spread functiofi(b) in Eqg. (26), which gives rise to a
as a function ofx as x—0. One can also chooskb) to constantsY,, produces a termi(s)«s? in addition to terms
obtain anN-dependent density at the origin that goes to zero2(s) =In s from Y. However, as mentioned earlier, this term
a constant or infinity in théN— oo limit. An N-independent is proportional ton/N, which vanishes in the largd limit
finite density at the origin was conjectured to be importantfor finite 7. Equation(26) therefore corresponds to a kind of
for the properties of theg random matrix ensembles re- critical ensemble witE(s) «In s for larges.
viewed in[18]. Note from Eq.(5) that in generabT, is not translationally

In particular, f(b) can be defined such that in the limit invariant; clearly the critical ensembles in such cases will not

s/2 s/2
3(s)= J dpf dddlp-0-YaAp-0I. (27
-g/2 -g/2

055101-3



RAPID COMMUNICATIONS

K. A. MUTTALIB AND J. R. KLAUDER PHYSICAL REVIEW E 71, 055101R) (20095

give rise to number varianc®(s) «In s, and will correspond sum rule for the scaled two-point cluster functi¥a(p, )
to a different class. We also get a different class of criticalwhere the deficit of the sum rulg, as given in Eq(8), is a
ensembles if the contribution tg from Y3 is different from  characteristic of critical ensembles with multifractal wave
unity. For choices of(b) which diverge a®— 0, changing functions. Unlike critical ensembles discussed in the litera-
the order of the integrals overandb in Eq. (8) may not be  ture, these sum rule violations can correspond to different
justified, and the integral in Eq22) may depend on the forms for the number varianc®(s), corresponding to differ-
choice of suchf(b). ent classes of critical ensembles. These solvable generalized
In summary, we have constructed a generalized randorgnsembles should therefore be of interest in a wide range of
matrix ensemble whose characteristic function contains aareas where random matrix ensembles play an important
arbitrary non-negative spread functidib) with the only  role. While there are only a few known examples of gener-
condition that/gf(b)db=1. The correlation functions of the alized RMEs for which correlation functions can be evalu-
generalized ensembles are exactly solvable for any giveated exactly{6,7], a given model ofCy(T) or Py(X) charac-
f(b). Various choices off(b) lead to a variety of possible terizing a physically relevant generalized RME becomes
density of levelsoy(x), which can depend om or N in a  exactly solvable if the corresponding spread functfgh)
variety of different ways, leading to possible deviations fromcan be found. This opens up the possibility to obtain exact
Gaussian Ensembles. In particular, we showed that it is pogesults for a variety of interesting and physically useful gen-
sible to choose forms of(b) that lead to violations of the eralized RMEs.

[1] M. L. Mehta,Random Matrices2nd ed(Academic, New York M. R. Zirnbauer, Phys. Rev. Letb3, 215(1984); M. V. Berry
1991). and M. Robnik, J. Phys. A7, 2413(1984; E. B. Bogomolny,

[2] For recent reviews and applications see T. Guhr, A. Mueller- B. Georgeot, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett.
Groeling, and H. Weidenmueller, Phys. Re&g29, 189(1998); 69, 1477(1992; C. Crosche, J. Phys. &5, 4573(1992.

Random Matrix Theoryedited by P. J. Forrester, N. C. Snaith, [9] V. Plerouet al, Phys. Rev. Lett.83, 1471(1999

and J. J. M. Verbaarschot, special issue of J. Phys. A135 [10] For simplicity, we will consider unitary RMEs with broken

(2003. . . .
[3] L. Laloux, P. Cizeau, J. P. Bouchaud, and M. Potters, Phys. ~ iMe reversal symmetry1]; extension to other symmetries

Rev. Lett. 83, 1467(1999; A. Moustakast al, Science287, should be straightforward. ,

287 (2000. [11] See, e.g., E. Lukac§haracteristic Functions2nd ed(Hafner

[4] K. A. Muttalib, J.-L. Pichard, and A. D. Stone, Phys. Rev. Lett. Pub. Co., New York, 1970
59, 2475(1987; A. D. Stone, P. Mello, K. A. Muttalib, and [12] A. C. Bertoula, O. Bohigas, and M. P. Pato, Phys. Rev/(:

J.-L. Pichard, inMesoscopic Phenomena in Solidslited by 065102(2004); F. Toscano, R. O. Vallejos, and C. Tsallisid.
B. L. Altshuler, P. A. Lee, and R. A. WebtNorth-Holland, 69, 066131(2004.
Amsterdam, 1991 p. 369. [13] J. T. Chalker, V. E. Kravtsov, and I. V. Lerner, Pis’ma Zh.

[5] B. L. Altshuleret al,, Zh. Eksp. Teor. Fiz94, 343(1988 [Zh. Eksp. Teor. Fiz.64, 355(1996 [Pis’'ma Zh. Eksp. Teor. Fiz.
Eksp. Teor. Fiz.67, 625(1988]; B. I. Shklovskiiet al, Phys. 64, 386(1996)].

Rev. B 47, 11 487(1993; J.-L. Pichard and B. Shapiro, J. [14] C. M. Canali and V. E. Kravtsov, Phys. Rev. &1, R5185
Phys.(France 4, 623(1994; V. E. Kravtsov, |. V. Lerner, B. (1995.

L. Altshuler, and A. G. Aronov, Phys. Rev. Letf2, 888  [15] F. Wegner, Z. Phys. B36, 209 (1980; C. Castellani and L.
(1994; A. D. Mirlin et al, Phys. Rev. E54, 3221(1996); E. Peliti, J. Phys. A19, L429(1986; W. Pook and M. Janssen, Z.
Bogomolny, O. Bohigas, and M. P. Patthid. 55, 6707 Phys. B: Condens. MatteB2, 295 (1991); J. T. Chalker,
(1997; A. M. Garcia-Garcia and J. J. M. Verbaarschot, Nucl. Physica A 167, 253(1990; B. Huckestein and L. Schweitzer,
Phys. B 586, 668(2000. Phys. Rev. Lett.72, 713(1994.

[6] M. Moshe, H. Neuberger, and B. Shapiro, Phys. Rev. L&3.  [16] See, e.g., G. G. EmctAlgebraic Methods in Statistical Me-
1497 (19949; V. E. Kravtsov and K. A. Muttalib,ibid. 79, chanics and Quantum Field TheofWiley-Interscience, New
1913(1997. York, 1972.

[7] K. A. Muttalib, Y. Chen, M. E. H. Ismail, and V. N. Nicopou- [17] P. Cizeau and J. P. Bouchaud, Phys. Re\6(: 1810(1994;
los, Phys. Rev. Lett71, 471(1993; C. Blecken, Y. Chen, and Z. Burdaet al, ibid. 65, 021106(2002.

K. A. Muttalib, J. Phys. A27, L563 (1994). [18] See K. A. Muttalib, Y. Chen, and M. E. H. Ismail, Bymbolic

[8] T. A. Brody, Lett. Nuovo Cimento Soc. ltal. Fis7, 482 Computation, Number Theory, Special Functions, Physics and

(1973; M. V. Berry and M. Tabor, Proc. R. Soc. London, Ser. Combinatoricsedited by F. Garvan and M. IsmaiKluwer
A 356 375(1977); T. H. Seligman, J. J. M. Verbaarschot, and Academic, Dordrecht, 2001

055101-4



